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ABSTRACT: Much of the previous research on total and heavy precipitation trends across the northeastern United States
(herein, the Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full
range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic pat-
terns in longer-duration heavy precipitation events across the Northeast. A multiduration (1, 2, 3, 7, 14, and 30 days),
multi-return-interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipi-
tation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event
combinations with the rarest, longest duration events increasing at faster rates than more-frequent, shorter-duration ones.
Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from rotated principal com-
ponent analysis and k-means clustering analysis, which allowed for the main synoptic types present as well as their structure
and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and
return intervals and included coastal low (Northeasters, tropical cyclones, and predecessor rain events), deep trough, East
Coast trough, zonal, and high pressure patterns.
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1. Introduction

Multiday and consecutive heavy precipitation events have his-
torically led to catastrophic flooding across the northeastern
United States (hereinafter, the Northeast). For example, record
rainfall on the multiday precipitation event from 3 to 4 November
1927 led to deadly flooding during the Great Vermont Flood of
1927, with estimated damages totaling $30 million in the state of
Vermont alone (Kinnison 1929; Dupigny-Giroux 2002). In addi-
tion, Hurricanes Connie and Diane, which occurred a week apart
in August 1955, resulted in flooding across New England, with
Hurricane Diane alone causing $600 million in estimated damage
(Dunn et al. 1955).

Previous evaluations of the changes in total and heavy pre-
cipitation over time across the Northeast have relied on daily
precipitation totals (e.g., Hayhoe et al. 2007; Frei et al. 2015;
Guilbert et al. 2015; Marquardt Collow et al. 2016; Huang
et al. 2017; Howarth et al. 2019), with less emphasis on the im-
pacts of multiday or consecutive events. In terms of extreme
multiday events (e.g., the top 1% of total event precipitation),
Agel et al. (2015) report over 90% of events occurring over a
1–3-day duration. Kunkel et al. (1999) found a 22% increase
in 7-day, 1-yr return interval events from 1931 to 1996. With a
longer time series (1949–2016) for the Northeast, Kunkel et al.
(2020) found statistically significant positive trends (ranging
from 5% to 20% per decade) in the frequency of occurrence

of 30 of the 35 duration–return interval precipitation events
examined (events had durations of 1, 2, 5, 10, 20, and 30 days
with return intervals of 1, 2, 5, 10, and 20 years). In analyzing
14-day extreme precipitation events observed between 1915
and 2018, Dickinson et al. (2021) reported an increase in the
number of events across much of the Northeast.

Daily heavy precipitation events in the Northeast tend to
be associated with large-scale patterns such as tropical cyclo-
nes (TCs), extratropical cyclones or synoptic systems, meso-
scale convective systems, convection, and fronts (Howarth
et al. 2019; Huang et al. 2018; Agel et al. 2015; Kunkel et al.
2012; Schumacher and Johnson 2005). These synoptic pat-
terns were primarily derived from the manual interpretation
of pressure, temperature, daily weather maps, storm tracks,
archived reports, or radar reflectivity characteristics. In con-
trast, Agel et al. (2018) used an objective clustering method to
identify large-scale meteorological patterns associated with
non-TC related daily extreme precipitation events in the
Northeast from 1979 to 2008. They classified six different pat-
terns including 1) strong ridge of high pressure most frequent
in summer (June, July, and August); 2) weaker ridge as a part
of a shallow trough–ridge pattern across southern Canada and
northern New England active in summer; 3) deep, negatively
tilted wintertime trough; 4) deep, negatively tilted summer-
time trough); 5) deep, transition season (spring and fall) trough
located over the Ohio Valley into the southern tier states; and 6)
a trough similar to (5) but located farther southwest and occur-
ring in the winter (Agel et al. 2018). While the aforementioned
studies only considered daily events, Jennrich et al. (2020)Corresponding author: Caitlin Crossett, crossett@hws.edu
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analyzed composites of 500-hPa standardized height anomalies
over 14-day extreme precipitation events from 1981 to 2010 and
found a persistent trough–ridge pattern, with a trough to the
west of the Northeast and ridge to the east.

Multiple studies have identified trends associated with daily
heavy precipitation events in the Northeast (Hayhoe et al.
2007; Frei et al. 2015; Guilbert et al. 2015; Marquardt Collow
et al. 2016; Huang et al. 2017; Howarth et al. 2019), and their
synoptic types (Henny et al. 2022; Howarth et al. 2019; Huang
et al. 2018; Agel et al. 2015; Kunkel et al. 2012; Schumacher
and Johnson 2005). This study seeks to extend the aforemen-
tioned studies by exploring multiduration, multi-return-interval
precipitation events over the Northeast in the 1895–2017 period.
In doing so, the interannual variability of these events is quanti-
fied, recent increases in precipitation are placed into their histor-
ical context and a broader understanding of changes beyond a
single statistical threshold, presented. The latter is of critical im-
portance in the realm of engineering design. In addition, this
study used an objective synoptic typing methodology to identify
the structure of daily synoptic patterns present in the dataset.
Presenting trends in multiduration heavy precipitation events
alongside their typical synoptic type allows for future analysis of
the drivers of the identified increases in precipitation.

2. Data and methods

a. Precipitation dataset

The precipitation dataset was generated from 1098 long-term
National Weather Service Cooperative Observer (COOP) sta-
tions available from 1895 to 2017 across the Northeast. The spa-
tial extent of the Northeast matches that of the Fourth and Fifth
National Climate Assessments, encompassing the states of New
York, New Jersey, Pennsylvania, Vermont, New Hampshire,
Rhode Island, Massachusetts, Connecticut, Maine, Delaware,
Maryland, andWest Virginia (Dupigny-Giroux et al. 2018; Fig. 1).

Stations with at least 10 years of data (which did not have to
be continuous in time) available in the 1989–2016 period were
included in this study. This criterion allowed for the inclusion
of a large number of stations, some with record lengths dating
back to the late-1800s from which long-term trends in precipi-
tation could be computed.

b. Event identification, trend, and changepoint analyses

As outlined in Kunkel et al. (1999, 2003) precipitation
events with durations of 1, 2, 3, 7, 14, and 30 days, which met
thresholds defined by return intervals of 2, 5, 10, and 50 years,
were extracted from the COOP network. Precipitation event
durations were defined as precipitation accumulation over
any N consecutive days (where N were the 1-, 2-, 3-, 7-, 14-,
and 30-day durations as defined above) that met or exceeded
the return interval thresholds considered. The thresholds for
analysis were identified using a partial duration series analysis
based on an individual station’s climatology. First, the precipi-
tation events were ranked by magnitude, the event of rank
one was determined, and the day(s) corresponding to that
event were removed from the time series. Then, the second-
ranked event was determined by finding the highest-ranking
event in the remaining data. This procedure was repeated un-
til N events were identified where N 5 My/R, with My being
the number of years of data and R being the return period in
years (Kunkel et al. 2003). This entire process was then re-
peated for all duration–return interval combinations. Note
that, while some days were counted as events for multiple
duration–return interval combinations, given the length of
the entire period of record and the large number of stations

FIG. 1. Spatial extent of the 12 states of the Northeast used in
this study. The 1098 National Weather Service COOP stations are
shown with white circles.

TABLE 1. Percent of days of a specific duration (columns) that
are also counted within a longer-duration event (rows) of the
same return interval.

Return
interval

Duration
(N days) 1 day 2 day 3 day 7 day 14 day

50 yr 2 day (830) 40.8 } } } }

3 day (1147) 27.5 56.8 } } }

7 day (2608) 12.1 21.7 30.8 } }

14 day (4315) 6.8 11.4 16.5 41.7 }

30 day (7609) 4.2 6.7 9.6 23.2 42.9

10 yr 2 day (3227) 50.2 } } } }

3 day (4353) 35.9 62.6 } } }

7 day (8180) 19.4 30.5 42.4 } }

14 day (12 549) 13.3 20.4 27.8 53.4 }

30 day (18 966) 9.7 14.6 19.7 37.8 58.3

5 yr 2 day (5497) 55.0 } } } }

3 day (7040) 41.3 67.3 } } }

7 day (12 608) 24.0 36.3 47.0 } }

14 day (18 275) 17.6 26.0 33.4 59.6 }

30 day (25 188) 13.5 19.7 25.3 45.4 66.2

2 yr 2 day (9781) 61.0 } } } }

3 day (12 351) 48.1 71.4 } } }

7 day (19 911) 31.2 44.0 55.8 } }

14 day (27 068) 24.0 33.4 42.2 68.2 }
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used in this study, the interpretation of the results was not
affected adversely (Table 1 shows the number of N-day events
that were captured in different durations of the same return
interval). By relying on the thresholds based on the climatol-
ogy at an individual station, the derived dataset using return
intervals to define precipitation events is more robust for
use in resilience planning than are the more traditional sta-
tistical thresholds such as the 99th percentile, because re-
turn intervals of precipitation events are used in engineering
design applications. In addition, the dataset allows for the in-
clusion of more than one heavy precipitation event per year as
compared with an annual maximum event selection method.

A yearly precipitation index was calculated to determine
the relative magnitude of precipitation that fell every year
from each duration–return interval event combination across
the Northeast. For each year, the total amount of precipita-
tion that fell above a given threshold in question was accumu-
lated over stations with sufficient data (.300 days yr21). This
yearly value of precipitation was then divided by the number
of stations with sufficient data to produce a yearly precipita-
tion index with units of millimeters per station. For example,
if a total of 20 mm of precipitation fell above a certain return
interval threshold in a year that had 40 stations with sufficient
data, that year’s precipitation index would be 0.5 mm per sta-
tion. Scaling the amount of precipitation that fell above a given
threshold by the number of stations with sufficient data each
year, reduced the impact of stations coming in and out of the
record and the increase in the number of stations over time.
Decadal trends in the precipitation index were calculated by
summing up the yearly index values over a 10-yr period and ap-
plying the Mann–Kendall test from the pymannkendall module
to them in the Python software language (Mann 1945; Kendall
1948; Hussain and Mahmud 2019).

The findchangepoints function in Matlab software was used
to identify abrupt shifts in the mean of the yearly precipitation
index, that is, changepoints, in the dataset (Killick et al. 2012).

In the dataset used in this study, an identified changepoint
could represent a change from pluvial (increased precipitation)
conditions to drier conditions or from drier conditions to
pluvial conditions. The findchangepoints function in Matlab
identifies years that partition the yearly precipitation dataset
into two time periods such that the mean of the yearly precip-
itation before and after that partition changes most signifi-
cantly. While previous studies have limited the number of
changepoints to one (e.g., Huang et al. 2017), this study al-
lowed the maximum number of changepoints to vary from
one to eight, given the hypothesis that more than one signifi-
cant changepoint existed in the long-term precipitation re-
cords. Therefore, the findchangepoints function may have
split the yearly precipitation dataset into more than two seg-
ments, depending on the number of changepoints that were
retained. An iterative process was used to determine the
appropriate number of changepoints to be kept for each
duration–return interval combination, with the goals of simulta-
neously reducing 1) the total residual error of adding additional
changepoints (error decreases with each additional change-
point) and 2) the number of changepoints that isolated single-
year values in the precipitation index time series. Significance
across changepoints was determined using Welch’s unequal var-
iances t test (p , 0.05). For a set of changepoints that isolated
fewer than three years of the time series, the changepoint that
resulted in a significant result from Welch’s unequal variances t
test, or the one with a smaller p value (in the case that neither
changepoint resulted in a significant change) was retained.

c. Synoptic typing analysis

Rotated principal component analysis (RPCA; Richman
1986) and k-means clustering were used to objectively extract
daily synoptic types associated with each duration–return in-
terval combination. RPCA was applied to the daily average

FIG. 2. Annual trends (percent per decade) in the precipitation
index (mm per station) for each combination of duration–return
intervals in the 1895–2014 period. The magnitude of the decadal
increase is shown both numerically and via the color graduation.
Numerical values in boldface type with an asterisk represent trends
that were significant to 95% confidence as determined by the
Mann–Kendall test.

FIG. 3. Changepoints identified in the yearly precipitation index
time series from 1895 to 2017 for each duration–return interval
combination. Years with an asterisk indicate that the changepoint
was statistically significant to 95% confidence using Welch’s
unequal variances t test (p, 0.05).
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850-hPa geopotential height data at 936 grid points over the
geographic region 258–508N and 95–608W for the period 1895–
2015. These upper-level gridded data were extracted from
version 3 of the NOAA–CIRES–DOE Twentieth Century
Reanalysis (20CRv3) provided by the NOAA/OAR/ESRL PSL
(https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html)
(Slivinski et al. 2021; Compo et al. 2011). The 20CRv3 data
have a spatial resolution of 1.08 latitude by 1.08 longitude and
have been shown to reliably reconstruct weather events and
long-term climate trends when compared with other reanaly-
ses and independent observations (Slivinski et al. 2021). The
synoptic typing analysis only extends through the year 2015,
which was the end of data coverage in the 20CRv3 dataset.

Objective grouping of RPCA loadings using k-means clus-
tering was performed following the methodology outlined in
Mercer et al. (2012) and Peters and Schumacher (2014). For
each set of duration–return interval combinations, the 850-hPa
geopotential height patterns associated with all event dates
were used and were standardized to remove seasonal impacts.
The input matrix of 850-hPa heights was in the T mode (tem-
poral; Richman 1986), given this study’s focus on the correla-
tions between individual dates, rather than between grid
points (i.e., S mode; Richman 1986). Next, the principal com-
ponent (PC) loading matrix was calculated using a truncated
version of the eigenvector matrix and corresponding eigenval-
ues. The scree test and the eigenvalue separation test of

FIG. 4. Yearly precipitation index for each duration–return interval combination overlaid with the changepoints iden-
tified in Fig. 3 (black dotted vertical lines). Note that not all changepoints plotted for a given duration (i.e., panel) are
representative of all durations. See Fig. 3 for changepoints consistent with each duration–return interval combination.
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North et al. (1982) were used to determine the number of PCs
to be kept, and therefore, the truncation of the eigenvectors
and eigenvalues. The first PC typically explains the most vari-
ance in a dataset, with the explained variance decreasing
monotonically in subsequent PCs. In this dataset, PC1 ac-
counted for 47%–57% of the variance, depending on duration–
return interval combination. The first seven PCs for all event
combinations were retained, using the tests described above,
accounting for 92%–95% of the explained variance. Finally,
the truncated PC loading matrix was linearly transformed
using the Varimax rotation (Richman 1986), to produce atmo-
spheric patterns that were more realistic and physically inter-
pretable (Richman 1986; Mercer et al. 2012; Peters and

Schumacher 2014). Running RPCA on the 850-hPa maps first,
ensured that the variability of patterns within groups was cap-
tured as compared with using an unsupervised averaging ap-
proach that would have likely averaged out the variability in
the mean atmospheric state (Mercer et al. 2012).

The k-means clustering method (Diday and Simon 1976),
from the sklearn.cluster module in Python (Pedregosa et al.
2011) was applied to the RPCA loadings on each date, to iden-
tify the individual synoptic map types associated with each
duration–return interval combination. Performing k-means clus-
tering on RPCA loadings reduces the possible impacts of RPCA
loadings isolating localized significant features that are not rep-
resentative of the synoptic pattern (Richman and Mercer 2012;

FIG. 5. (a)–(e) Composites of the 850-hPa geopotential height (black contours; m) of the five
patterns produced by the k-means clustering of the RPCA loading values for 1-day 2-yr events.
Crosses indicate the locations of stations, with precipitation events colored by the month of oc-
currence [as per the key in (f)]. The number of stations with precipitation events (as indicated by
the crosses) decreased as the number of days averaged in the composites increased (i.e., longer-
duration events) or the magnitude of the return interval increased (i.e., events became rarer).
(f) The number of events within each of the five clusters by month. See Fig. A1 in the appendix
for results plotted on a geographical domain that has been zoomed in to the Northeast region.
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Mercer et al. 2012). Five clusters were kept for each duration–
return interval combination based on results from the silhouette
score (Rousseeuw 1987), elbow test, and examination of cluster
output. Composites were created for each cluster by averaging
the 850-hPa geopotential heights at each grid point over all days
within that cluster. RPCA and cluster results for 30-day 2-yr
events were neither run nor reported because these events ac-
counted for 84% of the total days in the period of record.

3. Results and discussion

a. Trends and changepoints

Results indicated increasing trends in precipitation between
1895 and 2014, across all duration and return-interval event
combinations (Fig. 2). Trends were only calculated to 2014
due to the use of decadal time periods. Significant increasing
trends were found in 83% of the 2- and 5-yr return interval
events (1-day duration events did not have significant trends)
withmagnitudes that ranged froma 2%–6% increase in precipita-
tion per station per decade. The rarest (i.e., 50-yr return interval),
longest duration events increased at faster rates than more-
frequent, shorter-duration events, a result consistent withKunkel
et al. (2020). All 14-day duration events exhibited significant in-
creasing trends, consistent with results in Dickinson et al. (2021)

across much of the Northeast, performed using the 99th percen-
tile of 14-day accumulations. It should be noted that variations in
the magnitudes of the increasing trends across all duration–
return interval combinations of heavy precipitation events
across the Northeast highlight the potential gaps of a single
threshold approach. Using a threshold that underestimates
the trends in precipitation over time may result in design
standards that do not factor in rare, long-duration precipita-
tion events in the future (Kunkel et al. 2020).

The identified increases in precipitation may either be due in
part to increases in atmospheric water vapor or precipitable wa-
ter as temperatures have increased, or attributed to changes in
the intensity, frequency, or types of synoptic systems over time
(Kunkel et al. 2020). Annual precipitation in the Northeast is
expected to increase by a total of 14 mm month21 by the end of
the century (2071–2100) under the highest emission scenario
(RCP8.5; Lynch et al. 2016) and if the trends identified in this
study continue, much of the future increases in precipitation
may fall during the rarest, most impactful events.

The identification of abrupt changes in the time series of the
yearly precipitation index can indicate shifts in and the variations
of pluvial or dry time periods across the Northeast. Figure 3
lists the years associated with each changepoint identified for all
duration–return interval combinations. The time series of the

TABLE 2. Percent of the total number of days associated with the five synoptic types that fell within a given duration–return interval combination.

Return
interval Synoptic type 1 day 2 day 3 day 7 day 14 day 30 day

50 yr Northern coastal low 16.3 14.3 13.5 10.9 } }

Deep trough 19.8 19.5 24.1 19.3 9.3 14.4
East Coast trough 21.1 25.2 17.4 26.5 24.4 22.7
High pressure } } } } 7.5 7.4
Southern coastal low/PRE 7.8 9.0 10.6 7.3 } }

Upstream trough } } } } 21.7 21.6
Zonal 35.0 31.9 34.4 36.1 37.1 34.0

10 yr Northern coastal low 14.2 9.2 8.3 8.3 } }

Deep trough 22.1 17.3 18.1 15.7 11.8 17.1
East Coast trough 19.8 34.6 34.1 34.8 24.7 20.7
High pressure } } } } 6.8 7.3
Southern coastal low/PRE } 11.3 10.3 9.9 } }

Upstream trough 9.9 } } } 21.1 22.1
Zonal 33.9 27.7 29.3 31.4 35.6 32.8

5 yr Northern coastal low 13.1 9.0 8.6 } } }

Deep trough 22.7 20.3 18.4 13.9 18.1 18.0
East Coast trough 20.8 31.6 33.2 19.7 22.1 21.7
High pressure } } } 7.2 6.9 7.2
Southern coastal low/PRE 8.9 11.1 10.8 } } }

Upstream trough } } } 24.1 20.4 20.8
Zonal 34.5 27.9 29.2 35.2 32.5 32.4

2 yr Northern coastal low 8.7 8.4 8.9 } } }

Deep trough 20.6 19.1 19.7 16.5 18.3 }

East Coast trough 30.1 31.3 32.5 20.4 21.9 }

High pressure } } } 6.8 7.0 }

Southern coastal low/PRE 11.0 11.2 10.3 } } }

Upstream trough } } } 22.6 20.5 }

Zonal 30.0 30.0 28.8 33.9 32.3 }

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 62726

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 01:55 PM UTC



yearly precipitation index for a given duration (each panel of
Fig. 4) and return interval (each line on Fig. 4) are plotted on
Fig. 4 and include the location of each changepoint within that
time series. Figures 3 and 4 must be used together to identify
which changepoints are associated with a time series for the
yearly precipitation index for a given duration–return interval
combination. A changepoint was observed in 1955 or 1956 for all
duration–return interval combinations (Fig. 3). The changepoint
identified in 1955 is coincident with an increase in the yearly pre-
cipitation index (Fig. 4), possibly related to the aforementioned,
record-setting 1955 Atlantic basin hurricane season in which
Hurricanes Connie and Diane (the first billion-dollar hurricane)

occurred (Dunn et al. 1955). The 1956 changepoint corre-
sponded to a subsequent decrease in the yearly precipitation in-
dex (Fig. 4). Significant changepoints were also observed in the
late 1960s–early 1970s at several duration–return interval combi-
nations (Fig. 3). These likely represent the shift out of the
droughts observed over extended spatial and temporal scales for
the Northeast in the early-to-mid-1960s (Namias 1966, 1983), as
illustrated by a relative minimum in the yearly precipitation in-
dex across all durations and return intervals, to an increase in the
yearly precipitation index in the 1970s (Fig. 4). The changepoints
in 1955–56 and late-1960s/early 1970s were consistent with shifts
in biospheric responses to climate from 1900 to 2012 across the

TABLE 4. Pairing of the PREs associated with Atlantic Basin TCs from 1988 to 2010 and reported in Table 1 of Moore et al.
(2013) with the corresponding events in this study. Details on the TC characteristics [year, initiation time (UTC) and date, and
geographical region] were determined by Moore et al. (2013). States listed in the geographical area contained one or more stations
with a precipitation event that met or exceeded the 1-day Y-yr return interval threshold; the asterisk denotes those that had tropical
cyclone impacts mentioned in storm event reports extracted from the NOAA/NCEI Storm Events Database. States are listed using
U.S. Postal Service abbreviations.

TC (year)
Initiation time (UTC)

and date of PRE Geographical area

Return interval
of 1-day events
in PRE clusters

States with event on
initiation date of PRE

Erin (1995) 1500 UTC 4 Aug OH/PA/NY 2 yr NY/VT
Danny (1997) 0500 UTC 24 Jul NJ/PA 2 yr NJ*/PA*/NY/MD/WV
Bonnie (1998) 0400 UTC 26 Aug PA/NY/NY/CT 2, 5 yr }

Bonnie (1998) 1200 UTC 26 Aug NY/NJ/CT (off coast) 2, 5 yr }

Bonnie (1998) 0300 UTC 27 Aug NY/NJ/CT (off coast) 2, 5 yr NJ*

Isabel (2003) 0700 UTC 15 Sep PA/MD/NJ 5 yr MD*/DE
Frances (2004) 0400 UTC 8 Sep NY/CT 2, 5, 10, 50 yr NY*/CT*/PA/WV
Katrina (2005) 0000 UTC 30 Aug NY/PA/ME 2, 5, 10 yr NY*/PA*/ME/MA*/RI/WV
Katrina (2005) 0000 UTC 31 Aug MA/CT/ME 2, 5, 10 yr ME/NY/PA*/VT

TABLE 3. Percent of total event days by month within 50-yr return interval events.

Duration–return
interval Synoptic type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 day–2 yr Northern coastal low 4.1 6.2 9.4 12.5 11.0 12.5 4.4 9.3 7.3 10.7 6.7 6.0
Southern coastal low/PRE 1.8 2.3 3.0 4.3 8.5 10.9 10.2 16.9 20.3 12.8 6.1 3.0
East Coast trough 3.4 2.4 2.6 2.7 7.0 16.8 25.3 20.9 9.9 3.7 2.5 2.8
Deep trough 5.2 5.0 7.4 7.2 8.1 10.5 14.6 8.8 8.5 8.8 8.9 7.0
Zonal 2.2 1.8 3.1 2.3 6.9 15.8 21.6 21.7 13.5 5.4 3.0 2.7

1 day–50 yr Northern coastal low 0.0 1.1 8.0 8.0 4.5 14.8 5.7 13.6 18.2 14.8 5.7 5.7
Southern coastal low/PRE 0.0 0.0 0.0 0.0 0.0 14.3 2.4 16.7 35.7 26.2 4.8 0.0
East Coast trough 2.6 0.9 2.6 3.5 4.4 20.2 21.1 22.8 13.2 7.0 0.9 0.9
Deep trough 0.9 0.0 4.7 4.7 4.7 9.3 16.8 18.7 17.8 11.2 7.5 3.7
Zonal 1.1 0.5 0.0 1.6 5.8 13.8 29.1 25.4 16.4 2.6 1.6 2.1

3 day–50 yr Northern coastal low 1.3 0.6 7.1 11.6 7.1 11.6 7.1 17.4 12.3 11.0 6.5 6.5
Southern coastal low/PRE 0.0 0.0 0.8 1.6 3.3 7.4 1.6 15.6 27.9 31.1 9.0 1.6
East Coast trough 2.5 4.0 4.0 2.5 4.0 14.1 19.6 24.1 14.1 6.5 0.0 4.5
Deep trough 1.8 0.7 2.2 2.2 4.0 13.4 18.1 22.5 20.7 9.1 4.3 1.1
Zonal 0.8 0.3 3.5 2.5 4.8 11.9 28.9 25.6 15.2 1.3 2.3 3.0

14 day–50 yr High pressure 0.0 0.0 0.6 0.6 2.8 6.5 8.4 22.0 38.1 17.3 2.5 1.2
Upstream trough 1.6 1.3 3.5 4.0 8.9 11.0 18.0 21.4 11.0 10.2 4.7 4.4
East Coast trough 2.4 1.4 3.1 2.6 8.7 13.5 16.6 21.7 11.8 9.3 4.3 4.6
Deep trough 1.5 1.2 7.2 6.0 12.2 15.6 12.2 12.2 10.2 9.9 6.5 5.5
Zonal 2.7 1.9 1.8 1.8 6.1 10.2 29.9 24.4 9.7 4.7 3.2 3.6
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Northeast. Using reconstructions of water use efficiency and in-
ternal leaf CO2 concentration derived from networks of tree-
ring chronologies from northern hardwood–hemlock forests in
theNortheast, Rayback et al. (2020) andBelmecheri et al. (2021)
found three distinct periods in those variables from 1900 to 1956,
from 1957 to 1975, and from 1976 to 2010 [1901–56 and 1976–
2012 in Belmecheri et al. (2021)]. While the 1970s changepoint
occurred later in the biospheric reconstructions, this may be
due to lagged impacts of the 1960s drought on the trees sampled
(Rayback et al. 2020; Belmecheri et al. 2021).

The pluvial period of the post-1970s continued through
2017 with intermittent low yearly precipitation index peri-
ods observed in the late 1990s and early-to-mid-2000s, con-
sistent with drought events identified in previous literature
(Figs. 3, 4; Seager et al. 2012). The 1996 changepoint found
in 1-day 5-yr return interval events was consistent with that
found in Huang et al. (2017) for their set of extreme precipi-
tation events (1% of wet days recording the most precipitation

from 1901 to 2014) across the Northeast. It is important to note
that the changepoints from 1996 to 2012 highlight an increased
variability in moisture conditions across the Northeast, with 8 of
the 14 changepoints in the 123-yr period of record observed
since 1990 alone (Figs. 3, 4). The consistency in the timing of
the changepoints in both the observational precipitation record
and reconstructed tree-ring chronologies speaks to the robust-
ness of the changepoint identification procedure and underlying
land surface process dynamics.

b. Synoptic typing

To identify individual synoptic types associated with each
duration–return interval combination, k-means clustering
was applied to the RPCA loadings of all days within a given
duration–return interval. Composites were created using all
days within each cluster for each duration–return interval combi-
nation. For each of the five clusters retained for a given duration–
return interval combination, the daily 850-hPa geopotential height

FIG. 6. As in Fig. 5, but for 1-day 50-yr events. See Fig. A2 in the appendix for results plotted on
a geographical domain that has been zoomed in to the Northeast region.
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patterns associated with the dates within a cluster, were
composited to produce the predominant atmospheric pat-
terns. Using the 1-day, 2-yr events as an example, Figs. 5a–e
illustrates the predominance of a northern coastal low, south-
ern coastal low/predecessor rain event, East Coast trough,
deep trough, and zonal clusters. Similar patterns and season-
ality of occurrences (not shown) across all five clusters were
observed for the 2-day 2-, 5-, and 10-yr, 3-day 2-, 5-, and
10-yr, and 7-day 10-yr events. The first synoptic pattern, the
northern coastal low, represented 8.7% of the total 1-day
2-yr events and was marked by a 1420 m low pressure system
centered just east of Cape Cod, Massachusetts (Table 2; Fig. 5a).
Figure 5f shows the monthly occurrences of the five clusters.
Events in the northern coastal low cluster (which included TCs,
Northeasters, and coastal cyclones more generally) occurred all
year with the majority being observed in April, May, and June
(12.5%, 11.0%, and 12.5% of events within the cluster, respec-
tively) (Fig. 5f; Table 3).

The second synoptic pattern was a negatively tilted trough
located upstream of the Northeast with a tongue of high pres-
sure overspreading the Northeast from the east (Fig. 5b). The
850-hPa height patterns of individual events within this cluster
often included a closed low located offshore, along the south-
ern Atlantic Coast (which likely has been averaged out of the
composite due to the large number of events, that is, southern
coastal low in Fig. 5b). This pattern was observed in 11% of all
the 1-day 2-yr events (Table 2), with a maximum in August
and September (16.9% and 20.3%, respectively) (Fig. 5f;
Table 3), the most active time for TC activity in the Atlantic
Basin. It is hypothesized that one mechanism for the observed
heavy precipitation within this cluster were interactions of
tropical moisture (presumably from a cyclone a large distance
away) with a preexisting focus for precipitation in the North-
east (e.g., frontal boundary). Event types such as these were
first reported by Cote (2007) and were given the name pre-
decessor rain event (PRE). Galarneau et al. (2010) and

FIG. 7. As in Fig. 5, but for 3-day 50-yr events. See Fig. A3 in the appendix for results plotted on
a geographical domain that has been zoomed in to the Northeast region.
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Moore et al. (2013) identified PRE events across the United
States, including the Northeast, from 1988 to 2010. Their identi-
fied events were then compared with the 1-day duration heavy
precipitation events found in this study to examine the poten-
tial causes of events within the southern coastal low/PRE
cluster (Fig. 5f). Storm reports from NOAA’s Storm Events
Database (https://www.ncdc.noaa.gov/stormevents/) were used
to explore the coincidence of TC interactions in relation to the
heavy precipitation events identified in this study (Table 4). Six
1-day 2-yr events in this cluster matched previously identified
dates of PREs, that impacted any state in the Northeast from
1988 to 2010 reported in Moore et al. (2013; who identified
a total of 13 such PREs impacting the Northeast). Events
within this cluster that occurred outside of the typical months
for TC development may be due to convergence along frontal
boundaries or orographic barriers as moist air was transported
poleward.

The third synoptic pattern identified was an East Coast
trough oriented along the Atlantic coast. It was the most

frequently occurring pattern in 1-day 2-yr events (30.1%),
with 63% of events within this cluster occurring during the
summer months of June, July, and August (16.8%, 25.3%,
and 20.9%, respectively; Tables 2, 3; Figs. 5c,f). The fourth
synoptic pattern was a deep, neutral-to-positively tilted trough
that was associated with 20.6% of 1-day 2-yr events and oc-
curred in all months of the year (Table 2; Figs. 5d,f). Longer
durations of this synoptic type exhibited a trough with a posi-
tive tilt (not shown). The fifth and final synoptic type (Fig. 5e)
was representative of a zonal 850-hPa height pattern across
the Northeast with over half of the events in this cluster (59%)
occurring in the summer months of June, July, and August
(15.8%, 21.6%, and 21.7%, respectively) (Fig. 5f; Table 3).
Under weak flow aloft, most events in this cluster were likely
convective in nature and consistent with convective precipita-
tion events in previous studies (e.g., Agel et al. 2018; Howarth
et al. 2019). Also consistent with previous studies were clusters
with extratropical and tropical systems (coastal low clusters;
Figs. 5a,b; Howarth et al. 2019; Huang et al. 2018; Agel

FIG. 8. As in Fig. 5, but for 14-day 50-yr events. See Fig. A4 in the appendix for results plotted
on a geographical domain that has been zoomed in to the Northeast region.
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et al. 2015; Kunkel et al. 2012; Schumacher and Johnson
2005).

Using the 1-day, 50-yr return interval as an example (Fig. 6),
1-day events with longer return intervals (i.e., 1-day 5-, 10-,
and 50-yr events) displayed very similar synoptic patterns and
weather events to the 1-day 2-yr events, except for the deep
trough cluster. There, the trough axis was negatively tilted
(Fig. 6d) as opposed to the neutral or positive tilt in the 1-day
2-yr events (Fig. 5d). This trough was similar to the deep nega-
tively tilted trough identified in Agel et al. (2018; Fig. 6d; their
wintertime eastern trough pattern, C2 in their Fig. 4a). The
negative tilt of the trough may lead to greater instability over
the Northeast, allowing for stronger, deeper systems and the
potential for rainfall that meets or exceeds higher return inter-
val thresholds. The southern coastal low/PRE cluster in 1-day
50-yr events occurred in 7.8% of these events and had a more
well-defined area of weak low-pressure along the southern
Atlantic Coast (as compared with 1-day 2-yr events; Fig. 5b)
indicative of a TC (Table 2; Fig. 6b). All events within the

southern coastal low/PRE cluster occurred in summer and fall,
with maximum occurrences in September and October (35.7%
and 26.2%, respectively) (Fig. 6f; Table 3). Many of the sta-
tions with heavy precipitation in this cluster were located
along the Atlantic coast with fewer stations inland, suggesting
direct impacts from TCs and PREs that may have formed
ahead of a TC (Fig. 6b). With roughly three-quarters (73%) of
events in the northern coastal cluster occurring in summer and
fall with a peak in September (18.2%) (Figs. 6a,f; Table 3),
many may be due in part to the movement of TCs farther
north up the Atlantic Coast, affecting states across the North-
east. It is interesting to note that Agel et al. (2018) found a
similar pattern (categorized as the summertime eastern trough
pattern, C5 of their Fig. 4a), even though TC related precipita-
tion days were excluded from their analyses.

Although the synoptic types and seasonal distribution of
events for 2-, 3-, and 7-day 50-yr events (3-day 50-yr events
shown in Fig. 7) were very similar to the aforementioned
1-day events, key differences were noted. These included the

FIG. A1. As in Fig. 5, but for a smaller geographical domain (368–488N, 858–658W).

C RO S S E T T E T A L . 731JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 01:55 PM UTC



location of the trough axis in the deep trough cluster (Fig. 7d)
and the location of the center of low pressure in the northern
coastal low cluster (Fig. 7a). The deep trough and northern
coastal low clusters were associated with a similar portion of
the 2-, 3-, and 7-day 50-yr events, with 19.5%, 24.1% and
19.3% of events associated with the deep trough cluster and
14.3%, 13.5%, and 10.9% of events associated with the north-
ern coastal low cluster, respectively (Table 2). In addition, the
trough axis in the deep trough cluster was shifted farther west
over Lake Michigan, upstream of the Northeast (Fig. 7d),
while the center of low pressure in the northern coastal low
cluster composite was shifted farther south and west (inland),
now centered over New Jersey, in the 2- and 3-day 50-yr
events (Fig. 7a; 7-day 50-yr low pressure center is located over
the border of western New York and Pennsylvania, not
shown). Both the upstream displacement of the trough and
the inland migration of the more northern coastal low was
likely a reflection of the movement of the trough and coastal
low throughout the 3-day duration of the events, since each

850-hPa height pattern, for every day in the 3-day period
were included in the RPCA method.

There was a marked shift in the synoptic types at the longer-
duration and longer-return-interval events, particularly for the
5-, 10-, and 50-yr return intervals of the 14-day and 30-day
durations and the 2- and 5-yr return intervals for the 7- and
14-day durations. A new high pressure cluster was identified
and was associated with, on average, 7.1% of the precipitation
events within the event types listed above (Table 2). Using the
14-day, 50-yr events as an example (Fig. 8a), the high pressure
cluster was observed to occur primarily in August, September,
and October (22.0%, 38.1%, and 17.3% of events in the
cluster, respectively) (Fig. 8f; Table 3). High pressure days
generally preceded precipitation events or marked the tran-
sition between precipitation days throughout the 14-day du-
ration of an event, as found by manually analyzing several
events (not shown). While the high pressure pattern is not rep-
resentative of shorter-duration heavy precipitation events it
may be reflective of the fact that over longer durations, there

FIG. A2. As in Fig. 6, but for a smaller geographical domain (368–488N, 858–658W).
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are a series of small precipitation events that accumulate to ex-
ceed a given return interval threshold. Results from this cluster
were consistent with the summertime ridge pattern identified
in Agel et al. (2018; C1 of their Fig. 4a). The seasonality and
location of features of the deep trough cluster were consistent
with 1-day 2-yr events and the East Coast trough cluster
were consistent with all other shorter-duration events. The
deep trough composite was the only duration–return interval
combination with a closed low attendant with the trough; the
rest of the events analyzed exhibited an open wave pattern
(Figs. 5d, 6d, 7d, 8d). This may indicate that 14-day 50-yr events
were associated with more cut-off low patterns, but more infor-
mation about upper-level characteristics is needed to make this
distinction. The upstream trough cluster (Fig. 8b) was consis-
tent with the trough–ridge pattern identified in Jennrich et al.
(2020; trough to the west of the Northeast, ridge to the east)
and their analysis of synoptic characteristics of 14-day extreme
precipitation events.

4. Conclusions

In moving beyond the use of daily precipitation totals to ex-
plore heavy precipitation characteristics in the Northeast, this
study extends the existing literature via an analysis of multidura-
tion, multi-return-interval precipitation events over the 1895–
2017 period of record. Increasing trends in the magnitude of pre-
cipitation per station per decade from1895 to 2014were found for
all duration–return interval combinations analyzed. Our results
indicated that the rarest, longest duration events have increased
at faster rates than those with shorter durations and return inter-
vals. Fourteen unique changepoints were identified in the yearly
precipitation index since 1895. These shifts spanned both the dry-
to-wet transitions and vice versa, were spatially coherent and con-
sistent with the timing of similar shifts in climate reconstructions
from tree-ring chronologies. Note that the amount of variability
between pluvial and dry periods has increased in recent decades,
with 8 of the 14 unique changepoints in the 123-yr period of record

FIG. A3. As in Fig. 7, but for a smaller geographical domain (368–488N, 858–658W).
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being observed since 1996, potentially reflective of the impacts of
climate change on precipitation variability in the Northeast. Fu-
ture work should pursue the underlying causal dynamics for each
of the changepoints identified here.

Synoptic-typing results from the k-means clustering of
RPCA loading values of daily 850-hPa geopotential height
patterns for each duration–return interval combination
were similar across duration–return interval combinations
and times of the year, indicating that many heavy precipita-
tion events across the Northeast were produced by similar
types of synoptic systems. The similarities between the
short- and long-duration precipitation events may indicate
that the longer-duration precipitation events were com-
posed of one or two very heavy short-duration precipitation
events and the composites reflected those patterns. These
similarities could also mean that the longer-duration events
were composed of many small precipitation events, which
individually did not exceed the return interval thresholds
used in this study, but, when accumulated over the longer

duration, were enough to be considered a heavy precipita-
tion event. Future work should include an analysis of the
distribution, sequencing, and the magnitude of individual
precipitation events within longer-duration events to ad-
dress the preceding hypotheses. Synoptic patterns included
the presence of a coastal low, East Coast trough, upstream
trough, PRE, deep trough, zonal, and high pressure. In addi-
tion, the synoptic patterns identified in this work were con-
sistent with previous studies that have either objectively
classified large-scale patterns associated with daily heavy
precipitation events (i.e., Agel et al. 2018) or that consider
synoptic patterns associated with longer than one-day dura-
tion events (i.e., Jennrich et al. 2020) in the Northeast, al-
though this study considers a wider range of precipitation
event durations and magnitudes. This study could be ex-
tended with an analysis of the persistence of daily synoptic
patterns over longer durations (i.e., 14 and 30 days) in the
Northeast. In addition, future analysis of the relative distri-
bution of synoptic types associated with heavy precipitation

FIG. A4. As in Fig. 8, but for a smaller geographical domain (368–488N, 858–658W).
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events over time could help to uncover the drivers of the
identified increases in precipitation as well as further in-
sights on the role of climate change in altering expected pre-
cipitation patterns across the Northeast. Once completed,
an analysis of the trends in synoptic types over time could
be directly compared with the changepoint analysis to iden-
tify any changepoints that may relate to changes in trends of
synoptic circulations.
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APPENDIX

Zoomed-In Figures

Figures A1–A4 are similar to Figs. 5–8, respectively, but
have been zoomed into the Northeast domain for clarity.
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